Skip to content

Main Navigation

SEAM
SEAM
  • Home
  • Research
    • Introduction
    • Funding
    • Publications
    • Case Studies
  • Services
    • Overview
    • Non-Destructive Analysis
    • Materials Testing
    • Engineering Simulations
    • Additive Manufacturing
  • News & Events
  • Careers
  • About
  • Contact

Get In Touch

+353-(0)-51845648

rraghavendra@wit.ie

Highlights

SEAM Receives International Quality Management Certification

Read More

SEAM Shortlisted for KTI Impact Award 2020

Read More

SEAM Wins IMR Manufacturing Awards 2020

Read More

CFD

Services Engineering Simulations CFD

Read More
  • Overview
  • Case Studies

What is CFD?

Computational Fluid Dynamics (CFD) is the process of mathematically modeling a physical phenomenon involving fluid flow and solving it numerically using the computational prowess. CFD allows engineers to gain comprehensive knowledge about the flow field and enable them to develop better products at reduced costs with less physical prototyping.

SEAM uses CFD to examine flow phenomena such as turbulence, mixing, acoustic pulsation, and heat transfer. The fluid model can be coupled with a structural model to simulate fluid-structure interaction. SEAM uses CFD to optimise designs resulting in an enhanced understanding of flow mechanisms prior to prototype testing. This has resulted in cost savings for our customers by enabling them to reduce the number of prototype tests required and improve component operation and lifespan. Below is a list of the most common CFD simulation applications in use today.

Laminar and Turbulent Flow

Turbulence is the sudden violent movement of air, water, or other liquids. It is one of the most disastrous and unpredictable weather phenomena faced by pilots. In fact, extreme turbulence can make it impossible for airline pilots to control their planes, and may even cause serious injuries to passengers. CFD simulations use turbulence models to predict the effect of turbulence on a CAD engineered design. One of the most common models for simulating turbulence is Generalized k-omega (GEKO) in ANSYS. GEKO helps tailor turbulence models to a wide variety of applications by allowing users to adjust individual parameters of the simulation while maintaining the model calibration

Heating, Air conditioning, and Ventilation (HVAC) Applications of CFD Simulation

Despite being an overlooked fixture of our everyday lives, HVAC systems that pump and condition air into our homes and offices require intensive engineering and planning. In order to condition the air of a space effectively, keep air flowing through a room, and ensure high indoor air quality (IAQ), HVAC products have to take advantage of the physics of fluid dynamics. Creating HVAC diffusers, air handling units, and FTUs typically requires rigorous testing to ensure they can circulate and condition air effectively, and meet IAQ standards. As such, many HVAC equipment manufacturers have turned to CFD simulation to speed up prototyping and validating new designs. CFD simulation allows engineers to analyze the potential performance of their products in different spaces, and in different configurations.

Aerodynamics

Aerodynamics is the study of how air flows around objects (like aircrafts or automobiles). It is perhaps the most well known application of CFD — as automobile designers, aerospace engineers and sports equipment manufacturers all make use simulation software to reduce the drag and friction of air while improving the efficiency of their products. Beyond being able to design aerodynamic products without investing in many physical prototypes, simulation makes it possible for engineers to test very small changes to their design to maximize performance — dozens or hundreds of times before they go to production.

Pipe and Valve Simulation

Fluid flow can exert immense pressure on pipes and valves — and can lead to critical deformation and failure if it isn’t properly accounted for. As such, oil refineries, natural gas pipelines, and residential plumbing must all be optimized for fluid flow to achieve safety and prevent long-term damage to expensive equipment. Prior to the rise of CFD simulation, this sort of optimization required trial and error. Systems of piping were built with best-guess estimates, and were refined or revised after failure. With CFD simulation, engineers can model the performance of an entire system of pipes or isolate a single component (like a valve) to decrease the likelihood of failure. CFD simulation could also be used to investigate failure of aging infrastructure after-the-fact, giving engineers a more accurate picture of what happened.

Particle Simulation

The world is full of particle-fluid interactions and flows. From tablet coatings, vacuum cleaners and pipe erosions, engineers need to study these applications to ensure their products are optimized.

Case Studies

Hydraulic Tank Design Innovation Using CFD Analysis

See Case Study

Air Handler Unit CFD Analysis

See Case Study

Quick Links

  • Home
  • Research
    • Introduction
    • Funding
    • Publications
    • Case Studies
  • Services
    • Overview
    • Non-Destructive Analysis
    • Materials Testing
    • Engineering Simulations
    • Additive Manufacturing
  • News & Events
  • Careers
  • About
  • Contact

Contact Us

Applied Technology Building,
Waterford Institute of Technology
Cork Road, Waterford, X91 TX03
Ireland

+353-(0)-51845648

rraghavendra@wit.ie

Copyright © 2021 - SEAM - All Rights Reserved.

  • Website by Passion
  • Resources & Legal
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners who may combine it with other information you've provided to them or they've collected from your use of their services. To continue browsing on this site you will need to either opt in or out to our use of cookies by clicking 'Accept' or 'Don't Accept'AcceptDon't AcceptCookie Policy